A Mechanically Pumped Two-Phase Ammonia
Fluid Loop for Thermal Control

Ben Furst, Thermal Fluids Group
Team: Stefano Cappucci, Takuro Daimaru, Eric Sunada @’Jet Propulsion Laboratory

California Institute of Technology

March 25, 2019




Overview

* The JPL Two-Phase Technology Group has developed a novel
mechanically pumped two-phase fluid loop for thermal control

 Architecture is based on a modified Capillary Pumped Loop (CPL)

« A fully operational testbed using the target flight fluid (ammonia)
has been built and tested

Test results demonstrate that the system is feasible
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System Architecture

* Architecture is based on a Capillary Pumped Loop (CPL)

 Additions to CPL include:
1. A 'mechanical pump,
2. Abypassline
3. An additively manufactured planar evaporator
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« Assume steady operation with meniscus established in evaporator
 Liquid and vapor are separated at meniscus (P3 > P»)
* Flow is single-phase everywhere except in condenser

* The pump does not push liquid through evaporator wick
* Meniscus behaves like a hydrodynamic wall since at meniscus: Pyapor > Piiquid

« The pump only pushes liquid through the bypass line

» This allows the pressure at the condenser outlet (P,4) to be dictated by the
pump flowrate and pressure drop in the bypass line
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« Consider a pressure balance between point 1 and 4
AP]_A_ == APl,Z + AP3,4 - AP3,2
\ )
—~ Y —~
dP across dPin evap. capillary pressure
bypass line line rise across meniscus

- Solve for capillary pressure: AP;,
AP3’2 — APl,Z + AP3’4 - AP]_A_

» Capillary pumping is assisted by pressure drop in bypass line
» The mechanical pump covers the pressure drop in the bypass line
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System Operation llI
CPL vs. Pump-Assisted CPL
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» Addition of the mechanical pump can significantly increase
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Advantages of Pump-Assisted CPL Achitecture

- Adds additional capability to the classic CPL architecture

- Can accommodate larger pressure drops due to pump
* Higher heat loads are possible
* Longer transport lengths possible
- Simplifies integration and testing
» Can incorporate mechanical fittings/valves
+ Less sensitive to adverse orientations during ground testing
* More robust operation
* Mechanical pump gives additional control authority
» Could operate as a passive CPL with degraded performance if pump fails
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Testing Overview

* A pump-assisted CPL has been built and is currently under test
* Developed over past 3 years

 Currently working with an operationally flight-like system
« Working fluid: Ammonia (target flight-fluid)
* Incorporates all major system components in actual configuration
* Instrumented to monitor temperature, pressure, flowrate

- System has demonstrated stable, repeatable performance
- System is operating as anticipated
« Over 350 hours of testing completed

* Recent test campaign showed promising results
- Stable transport of heat loads from 30 W to 850 W
+ Heat fluxes sustained up to 13 W/cm?

» Maintained isothermal planar evaporator (x 2°C) between 30 W and 300 W
for a fixed pump speed
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Ammonia Testbhed
System Schematic
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Operating Specifications

Fluid Ammonia
Nominal operating temperature 20°C
Max operating temperature 30°C
Nominal operating pressure 124 psia
(Ammonia vapor pressure at 20°C) (110 psig)
Max planned working pressure 170 psia
(Ammonia vapor pressure at 30°C) (155 psig)
. 215 psia
Relief valve set pressure (200 psig)
System Proof Pressure 250 psig
Legend
P Press. transducer (abs.)
PG Pressure gauge (analog)

Temperature gauge

Thermocouple

Flow meter

Sight glass

Ball valve
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Needle valve
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Ammonia Testbed
Hardware
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Ammonia Testbed
Experimental Data |
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» Total flowrate fixed @ 90 g/min

» Heat load varied from 50 W to 300 W

» Temperature @ evaporator outlet
steady at ~27°C

» As heat load increases, evaporator
flowrate increases
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Notes
* As the heat load increases, the flowrate through the evaporator increases

* This implies that
a) The evaporator wick is working as a capillary pump
b) The fluid phases are separated with pure vapor only existing between
evaporator and condenser

« The system is working as anticipated
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. Pump Flowrate: 90 g/min
Ammonia Testbed Accumulator Temperature: 26°C
Evaporator IR Images Evaporator Temperature: 28°C

150 W 325 W -
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Ammonia Testbed
Evaporator Design

Fabrication: DMLS
Material: Aluminum
Size: 84" x 7.8 x 0.63”
MAWP: 200 psig

Max Pore Size: 22 ym
Permeability: 1e-13 m?
Porosity: 24%

Structural Pillars
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Conclusion

* A new architecture for a pump-assisted CPL has been developed

+ A prototype ammonia testbed has been built and tested
- System incorporates a novel AM planar evaporator

* Preliminary test results indicate that the system is feasible

- System operated as expected
 Transported heat loads from 30 W to 850 W

« Max heat flux: 13 W/cm?
« Subcooling demonstrated from 3°C — 10°C
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Future Work

- Refine evaporator design
* Reduce thickness and increase effectiveness

* Increase TRL of system
* Integrate flight-like components into testbed
 Continue to experimentally characterize system
- Develop analytical/numerical design and prediction capability
* Purse flight-demo opportunities
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